
NASA-CR-194612

)U

(NASA-CR-194612) GENERATION OF

ARTIFICIAL HELIOSEISMIC TIME-SERIES

(Aarhus Univ.) 10 p

frown

Unclas

G3/92 0191143

Inst. of Physics and Astronomy

Aarhus University
DK-8000 Aarhus C

Denmark





A/k'A manuscript no.

(will be inserted by hand later)

Your thesaurus codes are:
03.13.2 06.15.1

ASTRONOMY [

AND [

ASTROPHYSICS ]

20.10.1993 [

Generation of artificial helioseismic time-series

J. Schou 1'_'* and T. M. Brown s

1 Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000/_rhus C, Denmark

2 High Altitude Observatory, National Center for Atmospheric Research,** Box 3000, Boulder, CO 80307, U.S.A.

[the date of receipt and acceptance should be inserted later]

Abstract. We present an outline of an algorithm to generate
artificial helioseismic time-series, taking into account as much

as possible of the knowledge we have on solar oscillations. The

hope is that it will be possible to find the causes of some of the

systematic errors in analysis algorithms by testing them with
such artificial time-series.
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1. Introduction

As more helioseismic datasets have become available it has be-

come apparent that at least some of the analysis algorithms

used have systematic errors. This is perhaps most obvious

when one compares frequency splittings from different data

sets. These splitting show systematic differences, even when the

observations were taken at essentially the same time, hence rul-

ing out changes in the true solar rotation rate. Even analysing

the same dataset with different methods has yielded small but

statistically significant differences (Bachmann et al. 1993).

We hope that it will be possible to lind the causes of at least

some of the systematic errors by analysing artificial data sets

for which the 'true' mode parameters are known. To do this

it is necessary that the artificial data closely resemble the real

observations. The danger in checking analysis programs this

way is obviously that if one overlooks a crucial property of the

real data, one may be led to believe that the analysis program

performs well on the real data when, in reality, it is flawed. On

the other hand, it might be argued that if one cannot success-

fully analyse artificial data, for which, in principle, one knows

all the properties, there is not much chance that real data can

be reduced without introducing systematic errors.

In the following we will start with a short summary of the

relevant properties of solar oscillations and how the oscillations

are observed. Thereafter we will go into more detail about how

one-can construct artificial time-series given this information.

In a separate paper we will discuss some of the results obtained

by analysing artificial data from this program using a number
of different methods.
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2. Solar oscillations

The basic physical properties of solar oscillations and the tech-

niques used for observing them have been described in a num-

ber of reviews (Christensen-Dalsgaard & Berthomieu 1991 and

Hill et al. 1991). Here only the properties important for the
construction of artificial data will be described.

Individual modes are generally described by their radial

order n, degree l and azimuthal order m. For the purpose of

observing the modes and hence for constructing artificial data,

the radial order n is only important for determining the fre-

quency vntm of the mode. I and m on the other hand determine

the appearance of the mode on the solar surface and are thus

more important when reducing observations or generating ar-

tificial data. The radial component of the velocity (or the in-

tensity) on the solar surface from a mode with a given (n, I, m)

is given by

V,.,,m(6, 8, t) = Re [a,lm (t)Yt'_(_, 8)], (I)

where Re[] denotes the real part of a complex number (Im[]

similarly denotes the imaginary part), and y m is a spherical

harmonic given by

Ytm(_b, 8) = P]ml(8)e i'_¢ . (2)

The coordinates _ and 8 are longitude (For the purpose of

analysing solar oscillations data, the zero point of longitude is

usually placed at the Sun's sub-Earth meridian.) and colatitude

respectively, and a(t) is a time-series describing the (complex)
mode amplitude. Notice that the definition of the Ytm's is not

the most commonly used one, in that the sign is the opposite

from the standard definition for odd negative m's. This has

no effect on the time-series generated, as the phases of the

oscillations on the Sun are random. The reason for this sign
convention is historical.

The total surface velocity V is given by a sum over all

modes of the individual mode velocities

v(6,o,t) = _ y.,,,m(¢,e,t). (z)

The time-series a(t) is that of a stochastically excited

damped oscillator and hence the real and imaginary parts of

the Fourier transform a(v) of the time-series a(t) each have



/:
o

Sidelobe spectrum
1.0 '''""'" ...... '''" .... •

0.8

0.6

0.4

0.2

0.0

I

......... ..........

-60-40-20 0 20 40 60

A.(ffHz)

100

10 -1

__ 10 -2

o
a_ 10-3

10 -4

10 -5

Sidelobe spectrum
• I ' ' ' I ' ' ' I ...... I ' ' ' I ' ' • I •

1 /, \ {
i _ ",

tt ,r/_ /

-60-40-20 0 20 40 60

Fig. 1. The average theoreticalpower spectrum of a mode with a HWHM w = l_Hz with (dashed lines) and without (solid lines) time-gaps.
The left panel uses a linear scale, while the right panel uses a logarithmic scale. The dotted line shows the tmgapped power scaled such
that the peak power is the same as for the gapped power. The visibility function used was from a run with the Fourier Tachometer (which
was run jointly by HAO and the National Solar Observatories) from the spring of 1989, and should thus represent real one site data well.
The duty cycle was 34.94%

zero mean and a variance given by a Lorenzian profile in fre-

quency

v=(_) = PI" (4)
'

where P is a measure of the average mode power, w is the
half width at half maximum (HWHM) of the mode, and v0 is
the mode frequency. If the mode is excited very often during
its lifetime r = (2_rw) -1, the values of the discrete Fourier
transform at different frequencies close to the central peak are
independent. If the mode is only excited infrequently, the in-
dividuai points in the Fourier transform are not independent

-1 where texcitationover a frequency range of the order _excitation'

is the typical time between excitations.
The oscillations are observed by taking images of either

the intensity or the Doppler velocity at the solar surface (see
Hill et ai. 1991) at regular intervals of typically 1 minute• The
images are then usually interpolated to a uniform grid in _band
x - cos 0 and inner products with suitable masks are calculated
to isolate the different target modes

[fOl,rn(t) = Vobs(O, X, t)M_'(cb, z)dCdx, (5)
I d--lr/2

where o,,,,, is the observed time-_eries for a target (1, m)! Vob,
the observed surface velocity and._M__ the ma.sk used to isolate
the (1, m). The reason for the interpolation to a fixed net in lat-
Rude and longitude is that_i(_owS one -to c0mpens_te_for'=the
varying B-angle (which is the angle between the solar rotation
axis and the plane of the sky) and effective P-angle (which is
the angle on the images between the solar rotation axis and a

modes with +m and -m, but the same 1, look identical at any
given time, it is not possible to separate them at this point
in the processing; thus only masks with m > 0 are used (see
later). Also notice that all the n's at a given (I, m) appear in
the corresponding time-series.

For reasons explained later we have chosen to use masks
given by

Mp(_, x) = _Y_(_, x)Ap(r), (e)

where Ap(r) is an apodization chosen to reduce the contribu-
tion from the noise close to the solar limb and r = (cos2 0 +

sin 2 _bsin 20) ½ is the fractional radius of the given point on the
observed image of the Sun. The apodization function Ap, is
typically 1 inside a certain radius and monotonically decreas-
ing outside.

The time-series of each of the target (I, m)'s are then
Fourier transformed and the complex conjugate of the nega-
tive frequency part of the spectrum is identified with +rn, while
the positive frequency part is identified with -m. Due to bad
weather and other problems (such as the Sun being below the
horizon) the Sun is normally not observed uninterrupted. It is
thus necessary to zero-fill the time-series, which, unfortunately,
leads to temporal sidelobes in the Fourier transforms. Recall
that the Fourier transform of a product of two functions (the
time-series without gaps and the gaps represented as a visibil-
ity function with, say, 1 when there is data and 0 when there
is_not):_the 'c0nvoiution of the Fourier transforms oir the two
functions: Since the visibility function tends to be highly pe_
riodic (at least at moderate latitudes) due to the presence of
the day/night cycle, its Fourier transform (and thereby power

reference direction) without changing the masks as a function spectrum) contains peaks at multiples of lday -1 _ iL57tffIz.
of time. A uniform net in longitude also allows one to use a As the values of the Fourier transform of the uninterrupted
Fast Fourier Transform to do the longitude integrals, substan- time-series a_ the different frequency points are independent,
tinily decreasing the computational burden. Notice that since the average power spectrum of the gapped tlme-series is the



convolution of the average power spectrum of the ungapped

time-series (which is twice the variance in Eq. (4)) convolved

with the power spectrum of the window function. The effects

of the gaps are thus, as illustrated in Fig. 1, to introduce so-
called temporal sidelobes in the power spectra and to intro-

duce correlations among the previously independent points in

the Fourier transform. Also the power level far from the peak

is considerably higher relative to the peak when time-gaps are

present.

Since Y_n*'s are not orthogonal on the part of the Sun we

observe, individual (/, rn)'s are not perfectly separated by the
inner product operation described above. For Doppler velocity

observations, only the velocity in the direction of the observer
is detected and hence the effective area of the Sun observed is

even less than a hemisphere. The observed velocity signal from

a single mode is

v.,, .... b.(6,_,t)= 47-r=v.,_,=(,,e,t)

= V/_- r2Re[antm(t)Ylm(ck, a)]

= 47- ._e,'(_)rte [a.,mCt)ei'+] ,

(7)

where x/1- r 2 is the line of sight velocity projection factor.

The observed time-series for a target (l, m) is now given by

a sum over all modes on the Sun weighted by coefficients

ct,,,,y,,,, describing the sensitivities to modes characterized by

(l', m'), when the target mode is characterized by (I, m):

o,,..(t) f_l [./_= Vob. (_, z, t)M["(Cb, z)d4,dz

I J-,r/2

= V.,,V,m, (6, z, t)M[_(¢, z)d$dz

1 ,r/2 n , ,

= _ { re,p,,(_)rte(a.,,,..,(t)e*"*)
n¢ ll,rrd d--1 d--re/2

[Re(a,vv,,., (t)) cos (m'4,) -Im(a.,v,,v (t)) sin(m'$)] (8)

[ cos(mq_) + i sin(m_b)] V _ - r2Ap(r) } d$dz

/:
t/_t rr t rrt rrt t

.q2
°,, 1._.. (i., (_)e,, (.)Ap(.)47-r_

[Re(a.,vm, (t)) cos(mS) cos(m'¢,)

- Im(a,vv,.v(t))sin(mck)sin(m'd_)] } ld_bdz

= _. {c,,_,,,m,rte(_,,,,,m,(t))
71t,lt trt !

- ic[,,,,v,,_,Im(a,v,v,,,v(t)) } •

In the last equality, the sensitivity coefficients co,.,v,,, ,, and
t

cz,,,.,v, m, are defined as

""'""" = ¥ , .-./. { e,'(.)e,,"(.)

cos(m$) cos(m'$)Ap(r)_ } dq_dx
(0)

cos(m$) cos(m'$)Ap(r)sin(O)_ } d$dO,

, lfF'_ {= -- p2(z)P[I"(z)
Cl'rrt'lS'rrd "It i d--tr/2

sin(m_) sin(m'*)Ap(r)_ } d_bdz
(10)

sin(m_b) sin(m'¢)Ap(r) sin(O) _ } dSdO

and

1 if 1 + m + 1' + m' is even. (11)_t,,,,,,',,,,' = 0 otherwise.

Notice that the tangential component of the surface velocity

has been neglected in these calculations. For some modes (eg.

g-modes) it may be necessary to include it if a high accuracy
is needed.

The c's obviously satisfy some symmetry relations:

Cl_rt_,[t WCl _" Cll rt_t |tm

C_,m,,, m, = C',,,m,,,,m

Cl_m,lt rrll _ Cl_m_ltpm#

c[-,,,,V,,,,, = -c[,,,,t',,,v . (12)

For m _, 1

c_,,,,,,,,,,,, .m sign ( mm')ct,,,_,v,,_, . (13)

Note that these relations for the c's are only true if the geom-

etry of the images is correctly understood. If there are scale

errors, orientation errors, centering errors, or distortions they

may not hold. The fact that the image is sampled on a fairly

coarse grid may also introduce inaccuracies. On the other hand,

they do hold for many other types of masks, as long as these

have the same symmetric/antisymmetric properties around the

equator and the central meridian as the spherical harmonic
masks used here.

To find the corresponding crosstalks in the Fourier trans-
forms, suppose a mode (1', m') has a(t) = ae i'a (in other words

looking at a single frequency point in the Fourier transform).

As previously mentioned, the part of the Fourier transform of

the observed time-series o used for a given m is the positive

frequency part Iml if m is negative and the conjugate of the
negative frequency part if m is non negative. The crosstalk

to another mode (1, m) can now be found by noting that the

contribution from the mode (l', m') is given by

o,,m(t) = C,,m,V,m' a cos(wt) - ic[,n,v ,.,., a sin(wt) (14)

and that

ot.,,,(t) = b_e -i'°` + b+e i'°t, (15)



whereb_ is the amplitude in the negative frequency part of

the Fourier transform and b+ is the amplitude in the positive

frequency part. This gives (dropping subscripts)

1

b_ = _(c + c')a (16)

and

1 e')a (17)b+ = _(c- .

Thus a mode with given (1', m') will show up in the mode

(!, m) with the amplitude multiplied by

#

e,.m,v+ ,m,= (c,.m.,',m' + c,.m,,,,m,)12. (18)

The reason for the choice of normalization of the masks is that

it is convenient that

c+ = 1 (19)
[,m,i,tr_

for all (i, m) if there is no velocity projection factor, no apodiza-

tion and the integration is clone over the whole Sun.

Coarse sampling, seeing and any interpolations performed

on the images tend to smear the images, causing variations in

response that depend on 1 and m. It is possible to simulate the
effect of smearing by convolving the images of the oscillations

with a point spread function (PSF), but since the smearing has

to be performed in image coordinates it is fairly costly in terms
of computing. The most important effect of smearing is to lower

the sensitivity as a function of wavenumber. A second order

effect (which is often important, as one normally attempts to
push the i range) is to increase the leakages relative to the

target mode as the effective area observed decreases due to the
forshortening close to the solar limb.

The important properties of the noise are the temporal cor-

relation (leading to frequency dependent noise) and the corre-

lation between the noise in different time-series/Fourier trans-

forms. The frequency dependent noise comes from the fact that

most noise sources produce temporally correlated noise and not

white noise. The resulting spectrum thus depends on the noise

generation mechanism. Important contributions to the noise

typically originate in the Sun, in the Earth's atmosphere, and

in the instrument. Due to the different generation mechanisms,

the temporal and spatial properties of these contributions gen-

erally are different from another. As an example, both the tem-

poral and the spatial characteristics of various types of solar
granulation, scintillation in the Earth's atmosphere and ampli-

fier noise are very dissimilar.
The reason for the noise correlation between the different

time-series is the same as the reason for the leakage into a

target mode from other modes, namely that the masks used are

not orthogonal on the observed part of the Sun. The covariance

e*,m,v,m' between the real parts of the time-series for modes

with (1, m) and (l', m') is given by

ehm,V,,n, = e0 M_(¢, x)MIT (_b, x)Var($, x)d¢dx
--1 d--_r/2

= eo61,,,_,v,m, Pl (z)PV (x)
J0 J0

cos(me) cos(m'COAp(r)_Var(r) sin(0) } d_bd0,

where it has been assumed that the noise is uncorrelated be-

tween different points on the Sun and has a variance Var($, x)

that is symmetric around the equator and the central merid-

ian. The constant e0 has absorbed factors of 2 and _r and the
effects of the discreteness of the sampling. The discreteness

of the sampling and the (lack of) independence between dif-

ferent points are clearly connected. If the original pixels are

assumed independent then the integration elements in the pre-

vious equation cannot be, since different pixels are mapped into

different sized areas in the ¢-e plane. In addition to this (in a

sense trivial) problem, there are other more troublesome ones.
One is that it is difficult to estimate the covariance matrix;

another is that the computational burden goes up by several

orders of magnitude if a full covariance matrix has to be used.

For the imaginary parts it similarly follows that the covari-

ance of the noise time-series is given by

' P_(z)P,T'(z)
ei'm'|#'m# _ C_l'm'l:'ms Jo dO (21)

sin(mS) sin(m'$)hp(r)2Var(r) sin(e) } dede.

It also follows that the noise in the real parts of the time-series

is uncorrelated with the noise in the imaginary parts if the

noise is symmetric around the centrM meridian. Again it turns

out that the covariance between the same frequency point in

two different Fourier transforms is proportional to

e,,,,,.,,,,,,,+ = (e,,,,,.,,,,,,, + eb,,,i,.,,,s)/2 . (22)

Under essentially the same assumptions as those made in the
calculation of the crosstalks, it may be shown that the same

symmetry relations (Eqs. (12) and (13)) hold for the e's.

3. Generation of artiflcal time-series

In the previous section we discussed the basic properties of

the time-series. In this section we present a way to generate

time-series with prescribed properties. First we will show how

to generate a time-series for a single mode, then how to gener-
ate noise time-series, and finally how to combine the different

time-series, taking into account the crosstalks and the noise

correlations.

As noted in the previous section a single mode is well de-

scribed by a stochastically excited damped oscillator, hence a

straightforward way of generating time-series is to model such

an oscillator. It is, however, worthwhile to note that for all

relevant modes

A fob, ( r, (23)

where Atob8 is the time interval between samplings of the mode

and r is the mode lifetime. As previously discussed, this means

that it is not necessary to 'kick' the mode each timestep, but

only much more often than r. Since the generation of the ran-
dom numbers used to determine the kicks is fairly expensive

computationally, a considerable reduction in running time can

be acheived by applying kicks only at every nth observed time,

with n fairly large.
Consider a mode with a frequency v, lifetime r and an

rms velocity amplitude of v .... %bserved' with a time ca-

dence Atob, and with kicks applied with a cadence tkid, =



NkickAtobs _ r. In the simplest form of the algorithm we use,
the time-series of the mode is started out by setting the initial

value ao of the time-series to Vrm,(rand + i* rand), where rand

is a normally distributed random number with unit variance.
The first chunk of the time-series ak, k = 0, ..., Nkick -- 1 is then

set to

ak = ao exp(2gvikAtob, -- kAtob,/r), (24)

for k = 0, ..., Nkick -- 1. The initial value a_ of the next chunk

is set to

r = a0 exp(2xviNkick Atobs -- NkickAtobs/1"){Z0

+ akick (rand + i * rand) (25)

= ao exp(2_vitkick -- tkick/r)

+ akick (rand + i, rand) ,

where akick ---- Vrm,V/1 --exp(--2tkick/r) _ Vrm,_,

such that the expectation value of the power stays constant.

Finally the individual chunks are concatenated to yield the

complete time-series. Notice that apart from a0 all the chunks
are identical and that it is therefore possible to compute the

exponential once and for all. Also notice that the time-series

generated will not have exactly the specified vrm,, but rather

Vrm,_(1 - exp(--tkick/r)), as the decay of the mode during
each chunk has not been taken into account in the calculation

of the initial a0 and akick-

Kicking the mode only at selected timesteps does lead to

a slightly distorted line profile, in particular small bumps ap-
pear around the peak with a spacing of t_ctk. These bumps

are, however, so small and so far away from the main peak

that they drown in the noise for a realistic noise level. The

infrequent driving also leads to correlations between different

points in the Fourier transforms for a given mode (again at

a distance of the order t_ k), but again these should only af-

fect frequencies far from the main peak. In order to reduce the
first of these problems, we have not used the method as just

described. Rather than making the final time-series by con-

catenxting chunks of length tkick, we make them by adding

overlapping series of length 2tkick, each multiplied by x trian-
gular tapering function (see Fig. 2). This means that the kicks

are applied more gradually, giving less distorted power spectra.
An example of mode spectra generated this way is shown

in Fig. 3.
Frequency dependent noise can be created either by pass-

ing white (frequency independent) noise through a digital fil-
ter, or by generating frequency dependent noise in the Fourier
transform and transforming it back to the time domain. We
have chosen the latter approach. To avoid doing very long

Fourier transforms and to avoid storing long noise time-series,
we create small chunks of noise time-series and concatenate

them. Since the noise in different chunks is not correlated, the

noise spectrum will not be correct below frequencies of approxi-
--1

mutely tnoi_ e, where tnoise is the length of the chunks. Since this
is far below the frequency of the modes for even moderatly long

series, this should not lead to any major problems, however.

The correlation of the noise between different time-series/

Fourier transforms is slightly more difficult to handle. To gen-

erate time-series yi with a prescribed covariance matrix E one

starts with uncorrelated times series xi with unit variance and

sets y = Gx at each time step, where E = GG T. One way to

find G is to perform a Cholesky decomposition of E (see eg.

Golub & Van Loan 1989), where G a lower tridiagonal matrix.

That this produces the desired covariance follows from

Cov(yi, ya) ----E GikGJh_r_ = E GikGak

k k (26)

= E G°'(GT)kJ = (GGT)o =Eij ,
k

and is the trnxlitional way of generating vectors with a pre-

scribed covariance matrix.

A problem with generating the noise time-series this way

is that, in order to get the noise correlations between distantly

spaced l's correct, one should generate all noise time-series for
all l's and m's and use the covariance matrix for all l's and m's.

This is clearly not realistic; the covariance matrix is far too big.

Even for one ! it is problematic to use the matrix for all m's

when l is large, as the condition number for E becomes very

large (meaning that the covxriance matrix is close to singular).

A potential solution to this problem is to note that when

the integrals in Eqs. (20) and (21) are discretized one obtains

E = AA r for some matrix A (which generally has a very

large number of columns). If the Singular Value Decomposi-

tion (SVD) of this matrix is A = UEV r then

E = AA T = U_-_V TV_UT _- U_;_uT = U'U'T, (27)

where U' = U_ can be used the same way that (7 from the

Cholesky decomposition was used before. This U _ can be trun-

cated by only induding the highest singular values. It can be

shown that the error in E introduced by truncating U' goes

llke the sum of the squares of the neglected singular values,

and is thus presumably insignificant. In any case the errors

introduced this way are probably of the same magnitude as

those in the Cholesky decomposition, if not smaller, if enough

singular values are retained. In addition the truncated U _ ma-

trix has fewer coloumns than G and thus a smaller z vector

can be used. If this method is used it should be possible to

cover a substantial /-range consistently without running into

numerical problems, but this method has not been tested.

Finally the finished time-series are produced by adding up

the modes according to Eq. (8) and adding the noise as just

described.

4. Discussion

It would clearly be useful to be able to compare the artificial

data to real data to see if we have indeed been able to reproduce

the essential properties, such as crosstalks, mode frequencies,

amplitudes and linewidths. Apart from checking such obvious

things as that the overall levels of modes and noise are correct

and looking at the linewidths of the produced modes, it is,

however, very difficult to check whether the properties of the

artificial data are identical to those of the real data.

Unfortunately many of the possible comparisons depend

critically on knowing parameters for the real data that are dif-

ficult to determine and are largely irrelevant for the purpose

of testing analysis programs. Examples of such parameters are

exact mode frequencies, linewidths, and splittings, which, al-

though they may be the final goal of the analysis, are probably

not critical to model exactly as long as they are aproximately

correct. For instance, if all frequencies are in error by say l#Hz,

this is unlikely to make any difference for the purpose of testing
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analysisprograms,aslong as the frequency spacings are close
to their observed values.

A section of the p-mode spectrum for artificial data pro-

duced using this code and the corresponding spectrum from
a run with the Fourier Tachometer are shown in Fig. 4. For

illustrative purposes, the power spectra were collapsed in m,

shifting the spectra for the individual m's to remove an approx-
imation the the frequency shifts caused by the solar rotation.

The different plots of artificial data in Fig. 4 show where each of

the peaks in the spectrum of the real data comes from, and il-

lustrate the complexity introduced by crosstalks and time gaps.

The increased complexity introduced by time-gaps is, indeed,

the strongest argument for projects such as GONG and SOHO,
which aim to reduce the time-gaps to negligible proportions.

As can be seen from the third and fourth plots in the right

hand column of Fig. 4, the real and the artificial data look very

much alike. Note that it was not attempted to match the noise

level perfectly between the real and artificial data. Although

the general appearance of the real and artifical data are very
similar, there are minor differences, such as different ratios of

the power between peaks. Among the reasons for these differ-
ences are the different signal and noise levels, slightly different

dependencies of the mode amplitudes and linewidths with fre-

quencies, slightly different crosstalks due to (for instance) pro_

lems in estimating the PSF, and slightly different a-coefficients.
Also the fact that modes with Al >_ 4 were neglected in the

artificial data may be the cause of some of the differences.

Among the more subtle things that can be checked is
that the correlations in both the time-series and the Fourier-

transforms are as in the real data. A scatter plot of the val-

ues in a real and artificial time-series for (1, m) = (30, 0) and

(l, rn) = (30, 2) is shown in Fig. 5. Notice that the time-series of
modes with Al = 0 and Am = 2 are generally anti-correlated,

as the corresponding P_'s have opposite sign around the equa-

tor (x = 0), where the weighting by the masks is the highest.

In order not to have the plot dominated by the low frequency

noise (which is different), the time-series were high pass fil-
tered. Again it can be seen that the real and artificial data

behave similarly. However the match is not perfect, in particu-

lar it appears that the overall power level is somewhat higher

for the real data.

From looking at observations, it turns out that the distri-

bution of noise on the Sun is not a smooth function of radius

only, but often has additional contributions around active re-

gions, in addition to various bizarre instrumental effects. This

makes it very difficult to reproduce the correlations in the ob-

served noise. It is of course possible to use the observed cor-

relations from real data to generate the artificial noise, but

this approach has other problems. Also, it is far from obvious

that the noise properties are the same at the frequencies where

they are easy to measure (typically low frequencies) as they
are where one cares about them (in the p-mode band). Differ-

ent noise sources are likely to have very different spatial and

temporal characteristics, leading to variations in the correla-

tions with frequency. Also, a large contribution to the noise in

the p-mode band seems to be unresolved modes and temporal
sidelobes of those. As can be seen from Fig. 4, the addition

of a realistic noise level makes a very small difference to the

apparent noise level at the peak of the p-mode power distribu-

tion, especially if time gaps are present. When looking at the

data without time gaps (which would presumably be similar to
that obtainable with the GONG network), it is important to

note that the contributions from modes with Al > 4 have been

neglected, and that, given the level of the modes with AI = 3,
they are likely to contribute significantly to the apparent back-

ground noise level.
In a sense one of the best checks of whether the essential

properties have been modelled properly is to check that various
analysis programs give mode parameters close to the input
values. Unfortunately this does not prove (or disprove) that

the underlying assumptions are correct, only that they have

been consistently implemented between this program and the

analysis programs. This is of course not totally useless, but it

is not entirely satisfactory either.

All in all it thus appears that the best one can do is use

the program assuming that things have been properly imple-
mented. If it later turns out that the analysis program behaves

differently on real and artificial data by, for instance, indicating

that the statistical properties are different, it will be necessary

to find out which property of the real data was neglected or

incorrectly implemented.

Despite these problems with verifying the program, it has

been an extremely useful tool for testing our different analysis

procedures. One of the very useful features is the ability to turn

various properties on and off. In particular it is useful to be able

to turn off the noise, the time gaps and/or various parts of the

crosstalks, as those can easily lead to problems if not properly

taken care of. Some of the effects of turning various properties

of the time series on and off have been shown in Fig. 4. As can

be seen the spectrum is considerably simpler when crosstalks

and/or time gaps are neglected.

Using this program we have been able to identify problems
in some of the earlier versions of our analysis codes in the deter-

mination of the mode linewidths and the a-coefficients. These

parameters are very sensitive to certain errors in modelling the
crosstalks, as the individual m's are generally not resolved in

the power spectra.

Also, when we have been concerned that some particular

neglected effect has been causing problems, or when modifica-

tions to the programs have been made, it has been extremely

useful to know what the correct results were. If one had had

to rely on real data for these tests, it would only have been

possible to see that some parameter changed, and not whether

the change improved the results or made them worse.

A description of one analysis method and some of the re-

suits obtained by analysing artificial data generated by the

program described here can be found in $chou (1993). A more

systematic comparison of results from analysing the output of

this program using a number of different analysis methods is

in preparation.

It is possible to address some problems using this program

that it is not possible to treat using programs taking fewer of

the physical properties of the modes into account (eg. Anderson

et. al. 1991). These include the effects of crosstalks, both when

it comes to introducing interfering peaks from neighbouring

modes and correlations among the time-series, and the effects

of correlated noise. These are problems that are likely to affect

the mode linewidths and the so-called a-coefficients (describing

the effects of asphericities on the mode frequencies).

Also note that the dependency of the points in the Fourier

transform caused by the gaps in the time-series are treated

properly here, which is not the case if the Fourier transforms

are generated by multiplying white noise by the limit spec-
trum (from gq. (4) convolved by the sidelobe spectrum of the
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Fig. 4. Examples of power spectra for I = 30. The power spectra for the individual m's have been shifted according to the a-coefficients
used to generate the artificial data and summed over m. Ov]y a small fraction of the spectrum around n -- 12, which is close to the peak of
the power in the p-mode band, has been shown. The left column of plots show data without time-gaps, the right hand column shows plots
with the time-gaps used for Fig. 1. The top row shows the spectrum with no crosstalk from neighbouring/'s and no noise. The second row
shows a spectrum in which crosstalk out to Al of 3 has been included, but still without noise. The third row is similar to the second, except
that a noise level similar to that from observations with the Fourier Tachometer has been added. The bottom row shows a spectrum using
real data from the run with the Fourier Tachometer used for Fig. 1. Unfortunately, it was not possible to make the lower left hand plot
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time gaps). One time when these correlations are important is
when estimating the errors on the fitted parameters. If the cor-
relations are not taken into account, the values of the Fourier
transform in the side lobes and the m_n lobe are independent,

allowing lower standard errors on the fitted parameters than if
the correlations are properly modelled.

Unfortunately, we have not been able to eliminate all prob-

lems from our analysis procedures by using artificial data. In

particular it appears that we have a systematic problem with
our determination of the a-coefficients when analysing observa-

tions taken with the Fourier Tachometer (see Bachmann et al.

1993). Despite extensive tests using artificial data as described
here, we have not been able to find a problem in our analysis

programs. On the other hand if it had not been for these test
we would probably not have been able to convince ourselves

that the problem is not in the time-series analysis, given that
this is by far the most complicated part of the analysis. We are

therefore inclined to believe that the problem is in our under-

standing of either the physics or the instrument, rather than
in the time-series analysis programs as such.
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